Integrated Circuits & Sensor Systems

By combining TFTs with suitable electrical performance, sensors, diodes, and passive components such as resistors, and capacitors on a single substrate, integrated sensor systems can be realized. Here we focus on flexible analog circuits including amplifiers, and buffers for sensor readout circuits as well as oscillators, and modulators for communication circuits to create front-end conditioned, autonomous systems able to collect data in an unobtrusive way. The required flexible circuits are designed utilizing customized simulation models and optimized to work even when deformed.

Flexible analog circuits

Flexible sensors

Integrated flexible systems

Hybrid sensor systems

Selected relevant publications:

  • T. Meister, K. Ishida, C. Carta, N. Münzenrieder, and F. Ellinger, “Flexible electronics for wireless communication: a technology and circuit design review with an application example,” IEEE Microwave Magazine, vol. 23, iss. 4, pp. 24-44, 2022.
  • A. Pouryazdan, J. C. Costa, L. Garcia-Garcia, P. Lugoda, R. J. Prance, H. Prance, and N. Münzenrieder, “Design and characterisation of a non-contact flexible sensor array for electric potential imaging applications,” IEEE Sensors Journal, vol. 21, iss. 23, pp. 26328-26336, 2021.
  • N. Münzenrieder, G. Cantarella, L. Petti, and J. Costa, “Oxide thin-film electronics for the front-end conditioning of flexible magnetic field sensors,” in TMS 2021 150th Annual Meeting & Exhibition, 2021, p. 294–302.
  • J. C. Costa, A. Pouryazdan, R. J. Prance, H. Prance, and N. Münzenrieder, “Flexible bootstrapped cascode system with feedback for capacitive through-substrate electric potential measurements with a 55 dB relative gain,” in 2020 IEEE International Electron Devices Meeting (IEDM), 2020, p. 14.4.1-14.4.4.
  • A. Pouryazdan, J. C. Costa, F. Spina, R. J. Prance, H. Prance, and N. Münzenrieder, “Non-contact measurement of dc potentials with applications in static charge imaging,” in 2020 IEEE Sensors, 2020, pp. 1-4.
  • W. M. H. bin Wan Zaidi, J. Costa, A. Pouryazdan, W. F. H. Abdullah, and N. Münzenrieder, “Flexible IGZO TFT spice model and design of active strain-compensation circuits for bendable active matrix arrays,” IEEE Electron Device Letters, vol. 39, iss. 9, pp. 1314-1317, 2018.
  • N. Münzenrieder, D. Karnaushenko, L. Petti, G. Cantarella, C. Vogt, L. Büthe, D. D. Karnaushenko, O. G. Schmidt, D. Makarov, and G. Tröster, “Entirely flexible on-site conditioned magnetic sensorics,” Advanced Electronic Materials, vol. 2, iss. 8, p. 1600188, 2016.
  • C. Zysset, N. Munzenrieder, L. Petti, L. Buthe, G. A. Salvatore, and G. Troster, “IGZO TFT-based all-enhancement operational amplifier bent to a radius of 5 mm,” IEEE Electron Device Letters, vol. 34, iss. 11, p. 1394–1396, 2013.
  • N. Munzenrieder, L. Petti, C. Zysset, G. A. Salvatore, T. Kinkeldei, C. Perumal, C. Carta, F. Ellinger, and G. Troster, “Flexible a-IGZO TFT amplifier fabricated on a free standing polyimide foil operating at 1.2 MHz while bent to a radius of 5 mm,” in 2012 IEEE International Electron Devices Meeting (IEDM), 2012.